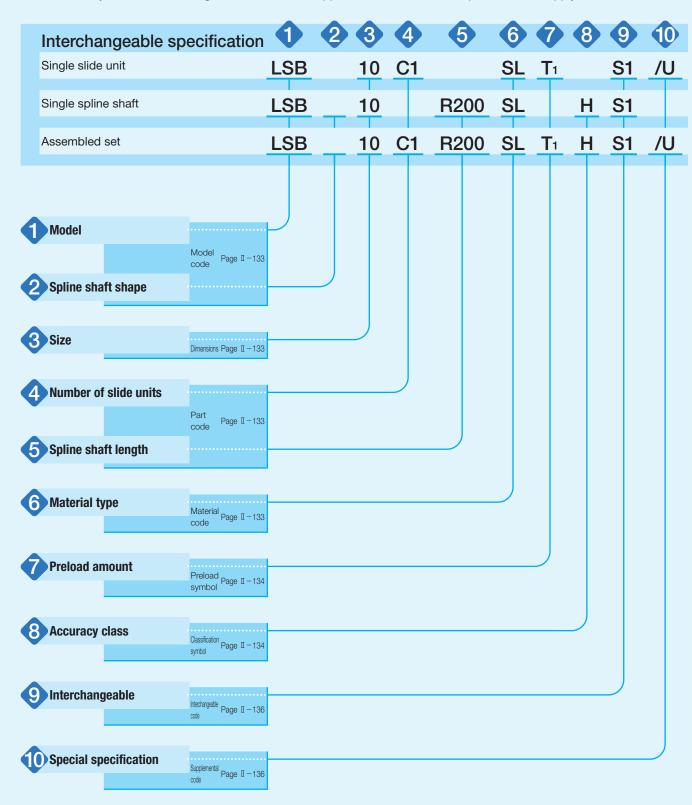


# **Points**

### Block type for easy mounting

The screw holes for mounting are provided on the slide unit, so that it can be easily mounted to the machine or device using bolts.

## Stainless steel selections for excellent corrosion resistance


Products made of stainless steel are highly resistance to corrosion, so that they are suitable for applications where rust prevention oil is not preferred, such as in a cleanroom environment.

## www.rodavigo.net +34 986 288118

## **Identification Number and Specification**

### Example of an identification number

The specification of LSB series is indicated by the identification number. Indicate the identification number, consisting of a model code, dimensions, a part code, a material code, a preload symbol, a classification symbol, an interchangeable code, and a supplemental code for each specification to apply.



# www.rodavigo.net +34 986 288118 Servicio de Att. al Cliente

# 

| A |                       |                                                |                    |                                                                                                                                         |  |  |
|---|-----------------------|------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| V | Model                 | Block Type Linear Ball S (LSB series)          | pline              | : LSB                                                                                                                                   |  |  |
|   |                       | For applicable models a                        | nd sizes, see      | Table 1.                                                                                                                                |  |  |
|   |                       |                                                |                    |                                                                                                                                         |  |  |
| 2 | Spline shaft shape    | Solid shaft<br>Hollow shaft                    | : No symbol<br>: T | For applicable models and sizes, see Table 1.                                                                                           |  |  |
|   |                       |                                                |                    |                                                                                                                                         |  |  |
| 3 | Size                  | 6, 8, 10, 13, 16, 20, 25                       |                    | For applicable models and sizes, see Table 1.                                                                                           |  |  |
|   |                       |                                                |                    |                                                                                                                                         |  |  |
| 4 | Number of slide units |                                                | : CO               | For an assembled set, indicates the number of slide units assembled on a spline shaft. For a single slide unit, only "C1" is specified. |  |  |
|   |                       |                                                |                    |                                                                                                                                         |  |  |
| 5 | Spline shaft length   |                                                | : RO               | The spline shaft length is indicated in mm. For standard and maximum lengths, see the dimension table.                                  |  |  |
|   |                       |                                                |                    |                                                                                                                                         |  |  |
| 6 | Material type         | High carbon steel made<br>Stainless steel made | : No symbol : SL   | For applicable models and sizes, see Table 1.                                                                                           |  |  |
|   |                       |                                                |                    |                                                                                                                                         |  |  |

### Table 1 Models and sizes of LSB series


| Material                  | Chang        | Madal | Size |      |      |    |    |    |    |
|---------------------------|--------------|-------|------|------|------|----|----|----|----|
| Material                  | Shape        | Model | 6    | 8    | 10   | 13 | 16 | 20 | 25 |
| oon steel<br>de           | Solid shaft  | LSB   | ○(¹) | ○(¹) | ○(¹) | 0  | 0  | 0  | 0  |
| High carbon steel<br>made | Hollow shaft | LSBT  | ○(¹) | ○(¹) | ○(¹) | 0  | 0  | 0  | 0  |
| Stainless steel made      | Solid shaft  | LSBSL | 0    | 0    | 0    | -  | -  | _  | -  |

Note (1) Slide units of size 6, 8, and 10 series are stainless steel-made only. When high carbon steel-made is specified for an assembled set, only the spline shaft will be high carbon steel-made.

Remark: The LSB series are all interchangeable specification. Non-interchangeable specification is not available.

## www.rodavigo.net +34 986 288118

## Number of Slide Unit $\cdot$ Spline Shaft Length $\cdot$ Material Type $\cdot$ Preload Amount $\cdot$ Accuracy Class—

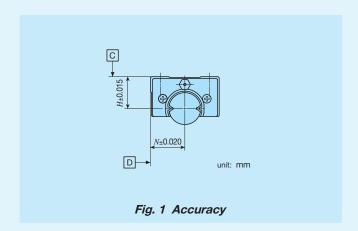


Standard Light preload

: No symbol Specify this item for an assembled set or a single slide

For details of the preload amount, see Table 2. For applicable preload types, see Table 3.

### Table 2 Preload amount


| Preload type  | Preload<br>symbol | Preload<br>amount<br>N | Operational conditions                                                                                     |
|---------------|-------------------|------------------------|------------------------------------------------------------------------------------------------------------|
| Standard      | (No symbol)       | <b>O</b> (1)           | · Light and precise motion                                                                                 |
| Light preload | T <sub>1</sub>    | 0.02 C <sub>0</sub>    | <ul><li> Almost no vibrations</li><li> Load is evenly balanced</li><li> Light and precise motion</li></ul> |

Note (1) Indicates zero or minimal amount of preload. Remark:  $C_0$  indicates the basic static load rating.

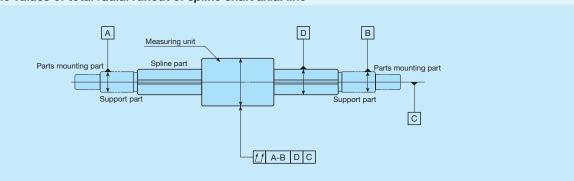
### Table 3 Application of preload

|      | Preload type (preload symbol) |                                 |  |  |  |  |
|------|-------------------------------|---------------------------------|--|--|--|--|
| Size | Standard<br>(No symbol)       | Light preload (T <sub>1</sub> ) |  |  |  |  |
| 6    | 0                             | _                               |  |  |  |  |
| 8    | 0                             | 0                               |  |  |  |  |
| 10   | 0                             | 0                               |  |  |  |  |
| 13   | 0                             | 0                               |  |  |  |  |
| 16   | 0                             | 0                               |  |  |  |  |
| 20   | 0                             | 0                               |  |  |  |  |
| 25   | 0                             | 0                               |  |  |  |  |

**Accuracy class** Ordinary : No symbol Specify this item for an assembled set or a single High : H spline shaft. For details of accuracy class, see Fig. 1, Table 4 and



## **Accuracy Class**-


Table 4 Twist of grooves with respect to effective length of the spline part

unit: µm

| Accuracy class  | Ordinary<br>(No symbol) | High<br>(H) |
|-----------------|-------------------------|-------------|
| Allowable value | 33                      | 13          |

Remark: The values can be applied to 100 mm of the effective length of the spline at any position.

Table 5 Allowable values of total radial runout of spline shaft axial line



unit: μm

| Size and accuracy |       |             | Size |             |      |             |      |             |      |  |  |
|-------------------|-------|-------------|------|-------------|------|-------------|------|-------------|------|--|--|
|                   | class | 6,          | 8    | 10, 13      |      | 16, 20      |      | 25          |      |  |  |
| Overall length    | of    | Ordinary    | High | Ordinary    | High | Ordinary    | High | Ordinary    | High |  |  |
| spline shaft m    | nm    | (No symbol) | (H)  |  |  |
| _                 | 200   | 72          | 46   | 59          | 36   | 56          | 34   | 53          | 32   |  |  |
| 200               | 315   | 133         | 89   | 83          | 54   | 71          | 45   | 58          | 39   |  |  |
| 315               | 400   | 185         | 126  | 103         | 68   | 83          | 53   | 70          | 44   |  |  |
| 400               | 500   | 236         | 163  | 123         | 82   | 95          | 62   | 78          | 50   |  |  |
| 500               | 630   | _           | _    | 151         | 102  | 112         | 75   | 88          | 57   |  |  |
| 630               | 800   | _           | _    | 190         | 130  | 137         | 92   | 103         | 68   |  |  |
| 800               | 1 000 | _           | _    | _           | _    | 170         | 115  | 124         | 83   |  |  |
| 1 000             | 1 250 | _           | _    | _           | -    | _           | -    | 151         | 102  |  |  |

Remark: Applied to all models of the same size.

Table 6 Measuring methods of accuracy

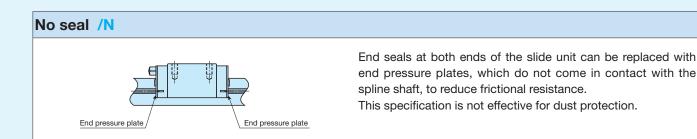
| Item                                | Measuring method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Illustration of measuring method                            |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| with respect to effective length of | While supporting the spline shaft fixed, apply a unidirectional torsion moment load to the measuring unit, place the dial gage probe vertically to the spline shaft on the side face of the sunk key attached on the external cylinder, and measure the deflection when the external cylinder and the dial gage probe are moved 100 mm in the axial direction at any position on the effective length of the spline shaft. However, the dial gage probe should be applied as near as possible to the outer peripheral face of the external cylinder. | Sunk key  100  Reference block for dial gage probe movement |
|                                     | While supporting the spline shaft at its support part or at both centers, place a dial gage probe on the outer peripheral face of the measuring unit and measure the deflection from one rotation of the spline shaft at several positions in the axial direction to obtain the maximum value.                                                                                                                                                                                                                                                       |                                                             |

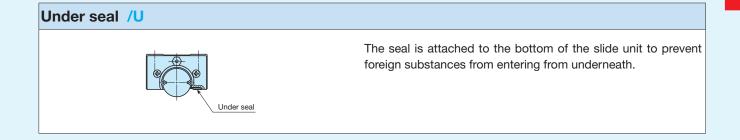
For applicable special specifications, see Table 7.

## www.rodavigo.net +34 986 288118

### Interchangeable Specification · Special Specification-

Special specification

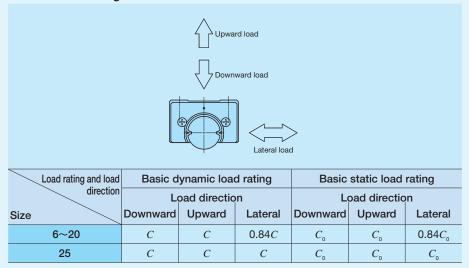

| 9 Interchangeable | S1 specification<br>S2 specification | : S1<br>: S2 | Assemble a spline shaft and a slide unit with the same interchangeable code. Performance and accuracy of |
|-------------------|--------------------------------------|--------------|----------------------------------------------------------------------------------------------------------|
|                   | oz specification                     | . 02         | "S1" and "S2" are the same.                                                                              |


Table 7 Application of special specifications (Single slide unit and assembled set)

/N, /U

| Special specification | Supplemental |   |   |    | Size |    |    |    |
|-----------------------|--------------|---|---|----|------|----|----|----|
| Special specification | code         | 6 | 8 | 10 | 13   | 16 | 20 | 25 |
| No seal               | /N           | 0 | 0 | 0  | 0    | 0  | 0  | 0  |
| Under seal            | /U           | 0 | 0 | 0  | 0    | 0  | 0  | 0  |

Remark: The combination of no seal (supplemental code/N) and under seal (supplemental code/U) is not available.






## **Load Direction and Load Rating**

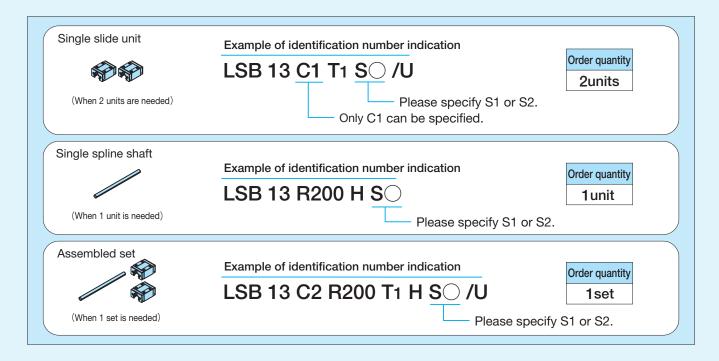

The LSB series must be used with its load rating corrected in accordance to the load direction. The basic dynamic load rating and basic static load rating shown in the dimension table should be corrected to values in Table 8.

Table 8 Load ratings corrected for load direction



## **Identification Number and Quantity for Ordering**

To order an assembled set of LSB series, please specify the number of sets based on the number of spline shafts. For slide unit or single spline shafts, please specify the number of units.



## **Moment of Inertia of Sectional Area and Section Coefficient of Spline Shaft**

Table 9 Moment of inertia of sectional area and section coefficient of spline shaft

| Identification number | Moment of inertia |              | Section coefficient<br>mm <sup>3</sup> |              |  |
|-----------------------|-------------------|--------------|----------------------------------------|--------------|--|
|                       | Solid shaft       | Hollow shaft | Solid shaft                            | Hollow shaft |  |
| 6                     | 55                | 54           | 19                                     | 19           |  |
| 8                     | 170               | 170          | 44                                     | 43           |  |
| 10                    | 440               | 420          | 90                                     | 87           |  |
| 13                    | 1 220             | 1 160        | 190                                    | 180          |  |
| 16                    | 2 830             | 2 630        | 360                                    | 340          |  |
| 20                    | 7 110             | 6 620        | 730                                    | 680          |  |
| 25                    | 17 600            | 15 100       | 1 440                                  | 1 230        |  |

## **Lubrication**

Lithium-soap base grease (MULTEMP PS No.2 [KYODO YUSHI CO., LTD.]) is pre-packed in LSB series.

The LSB series has grease nipple or oil hole as indicated in Table 10 and Table 11. For supply nozzle applicable to each grease nipple and dedicated supplying equipment (miniature greaser) applicable to oil holes, see Table 13 and Table 14.

Table 10 Parts for lubrication

| Size       | Grease nipple type | Applicable supply nozzle type |
|------------|--------------------|-------------------------------|
| 6, 8, 10   | Oil hole           | Miniature<br>greaser          |
| 13, 16, 20 | A-M3               | A-5120V A-5240V               |
| 25         | A-M4               | B-5120V B-5240V               |

Table 11 Oil hole specifications

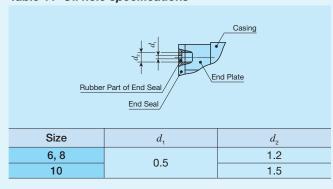



Table 12 Dimensions and shape of grease nipple

| Model | Dimensions and shape   |
|-------|------------------------|
| A-M3  | Width across flats 4   |
| A-M4  | Width across flats 4.5 |

Table 13 Miniature greaser



| Identification number | Grease name                                                     | Amount | Outside diameter of grease feed needle |  |
|-----------------------|-----------------------------------------------------------------|--------|----------------------------------------|--|
| MG10/MT2              | MULTEMP PS No.2<br>[KYODO YUSHI CO., LTD.]                      | 10ml   |                                        |  |
| MG10/CG2              | <b>IKD</b> Low Dust-Generation Grease for Clean Environment CG2 | TOTTI  |                                        |  |
| MG2.5/EP2             | Alvania EP Grease 2<br>[SHOWA SHELL SEKIYU K. K.]               |        | φ1mm                                   |  |
| MG2.5/CG2             | <b>IKD</b> Low Dust-Generation Grease for Clean Environment CG2 | 2.5ml  | Ψιιιιιι                                |  |
| MG2.5/CGL             | IKD Low Dust-Generation Grease for Clean Environment CGL        | 2.3111 |                                        |  |
| MG2.5/AF2             | IKD Anti-Fretting Corrosion Grease AF2                          |        |                                        |  |

Table 14 Types and dimensions of supply nozzle

| Model   | Dimensions and shape                                |
|---------|-----------------------------------------------------|
| A-5120V | Width across flats 12  Width across flats 12  PT1/8 |
| A-5240V | 240 29 Width across flats 12 PT1/8                  |
| B-5120V | Width across flats 12  Width across flats 12  PT1/8 |
| B-5240V | 240 29 Width across flats 12 PT1/8                  |

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

II - 138

## **Dust Protection**

The slide units of LSB series are equipped with end seals as standard for dust protection. However, if large amount of contaminant or dust are floating, or if large particles of foreign substances such as chips or sand may adhere to the spline shaft, it is recommended to attach a protective cover to the linear motion mechanism.

## **Precaution for Use**

### Mounting surface, reference mounting surface and typical mounting structure

When mounting the LSB, properly align the reference mounting surface D of the slide unit with the reference mounting surface of the table and fix it. (See Fig. 2)

Outside diameter surface of the spline shaft, reference mounting surface D and mounting surface C are precisely ground. Machining the mounting surface of the table and bed, such as machine or device, to high accuracy and mounting them properly will ensure stable linear motion with high accuracy.

Reference mounting surface of the slide unit is the opposite side of the IK mark. (See Fig. 3)

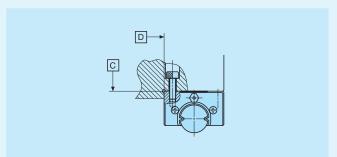
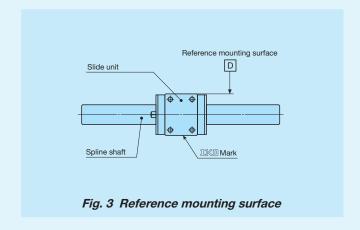
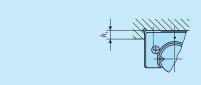




Fig. 2 Reference mounting surface and typical mounting structure



## www.rodavigo.net +34 986 288118


### Shoulder height of reference mounting surface

For the opposite corner of the mating reference mounting, it is recommended to have relieved fillet as indicated in Fig. 4. Recommended value for the shoulder height on the mating side is indicated in Table 15.



Fig. 4 Corner of the mating reference mounting

### Table 15 Shoulder height



unit: mm

| Size | Shoulder height |
|------|-----------------|
| 6    | 2               |
| 8    | 2.5             |
| 10   | 3               |
| 13   | 3.5             |
| 16   | 4               |
| 20   | 5               |
| 25   | 6               |

### 3 Additional machining of spline shaft end

The spline shaft is hardened by induction hardening. When additional machining on the shaft end is needed, make sure that the maximum diameter of the shaft end machining part does not exceed the dimension  $d_1$  in the dimension table. Spline shafts with special shaft end shapes can be prepared upon request. Contact IKO for further information.

### Multiple slide units used in close proximity

When using multiple slide units in close proximity, greater load may be applied than the calculated value depending on the accuracy of the mounting surfaces and reference mounting surfaces of the machine or device. In such cases, allowance for greater applied load than the calculated value should be made.

In addition, special products with variation between H and Ndimensions aligned can be prepared upon request. Contact IKO for further information.

### **5** Operating temperature

The maximum operating temperature is 120°C and temperature up to 100°C is allowed for continuous operation. When the temperature exceeds 100°C, contact IKO.

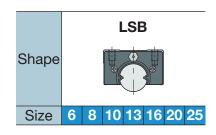
## 6 When mounting multiple assembled sets at the same

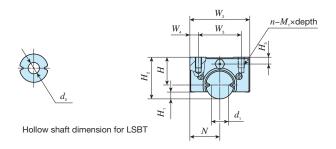
Assemble a slide unit and a spline shaft with the same interchangeable code ("S1" or "S2").

### Assembly of slide unit on spline shaft

When inserting a slide unit to the spline shaft, handle with care not to pry open the shaft and drop the balls.

### 3 Tightening torque for fixing screw


Typical tightening torque for mounting of the LSB series to the steel mating member material is indicated in Table 16. When vibration and shock of the machine or device are large, fluctuating load is large, or moment load is applied, fix it by using the torque 1.2 to 1.5 times larger than the value indicated in the table as necessary. If the mating member material is cast iron or aluminum alloy, reduce the tightening torque depending on the strength characteristics of the mating member material.


Table 16 Tightening torque for fixing screw

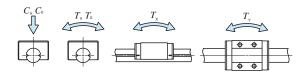
|           | Tightening torque N·m            |                            |  |  |  |  |  |  |
|-----------|----------------------------------|----------------------------|--|--|--|--|--|--|
| Bolt size | High carbon steel-<br>made screw | Stainless steel-made screw |  |  |  |  |  |  |
| M2×0.4    | 0.50                             | 0.31                       |  |  |  |  |  |  |
| M3×0.5    | 1.8                              | 1.1                        |  |  |  |  |  |  |
| M4×0.7    | 4.1                              | _                          |  |  |  |  |  |  |
| M5×0.8    | 8.0                              | _                          |  |  |  |  |  |  |
| M6×1      | 13.6                             | _                          |  |  |  |  |  |  |

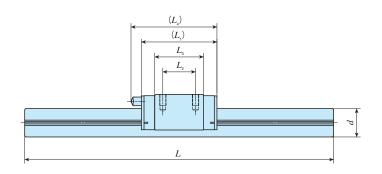
Note (1) The tightening torque is calculated based on strength division 12.9 and property division A2-70.

## **IKU** Block Type Linear Ball Spline

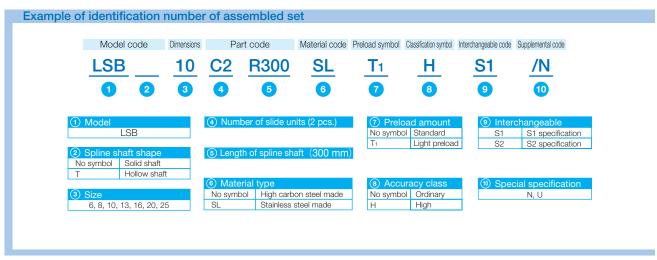





| Identification | ngeable  | Mass (Ref.)<br>g |               | Dimer                     |                 | of ass                     | embly   | Dimensions of slide unit<br>mm |         |       |          |          |         |         |                            |                      |       |  |
|----------------|----------|------------------|---------------|---------------------------|-----------------|----------------------------|---------|--------------------------------|---------|-------|----------|----------|---------|---------|----------------------------|----------------------|-------|--|
| number         |          | Interchangeable  | Slide<br>unit | Spline shaft (per 100 mm) | Н               | $H_{\scriptscriptstyle 1}$ | $H_2$   | N                              | $W_{2}$ | $W_3$ | $W_{_4}$ | $L_{_1}$ | $L_{2}$ | $L_3$   | $L_{\scriptscriptstyle 4}$ | $n-M_1 \times$ depth | $H_3$ |  |
| LSB            | 6        | 0                |               | 21.2                      |                 |                            |         |                                |         |       |          |          |         |         |                            |                      |       |  |
| LSBT           | 6        | 0                | 7.6           | 18.8                      | 6               | 1.1                        | 9       | 6.5                            | 13      | 8     | 2.5      | 20       | _       | 12.5    | _                          | 2-M2×3               | 1.5   |  |
| LSB            | 6 ···SL  | 0                |               | 21.2                      |                 |                            |         |                                |         |       |          |          |         |         |                            |                      |       |  |
| LSB            | 8        | 0                |               | 37.6                      |                 |                            |         |                                |         |       |          |          |         |         |                            |                      |       |  |
| LSBT           | 8        | 0                | 18            | 32.1                      | 32.1 8          | 1.3                        | .3 12   | 12 9                           | 18      | 12    | 3        | 25       | 8       | 15.6    | _                          | 4-M3×3               | 1.5   |  |
| LSB            | 8 ···SL  | 0                |               | 37.6                      |                 |                            |         |                                |         |       |          |          |         |         |                            |                      |       |  |
| LSB            | 10       | 0                |               | 59.7                      | 59.7<br>49.8 10 | 10 1.9 15                  |         |                                |         |       |          |          |         |         |                            |                      |       |  |
| LSBT           | 10       | 0                | 34            | 49.8                      |                 |                            | 9 15    | 10.5                           | 21      | 15    | 3        | 31       | 10      | 21.2    | _                          | 4-M3× 4              | 2.5   |  |
| LSB            | 10 ···SL | 0                |               | 59.7                      |                 |                            |         |                                |         |       |          |          |         |         |                            |                      |       |  |
| LSB            | 13       | 0                | 62            | 100                       | 3.2             | 10.5                       | 19.5 14 | 28                             | 28 20   | 1     | 4 35     | 15       | 22.4    | 40      | 4-M3× 5                    | 3.2                  |       |  |
| LSBT           | 13       | 0                | 02            | 77.9                      | 77.9            |                            |         | 19.5                           |         | 20    |          |          |         |         |                            |                      | 4     |  |
| LSB            | 16       | 0                | 112           | 152                       | 4.2             | 24                         | 16.5    | 33                             | 25      | 4     | 43       | 3 20     | 28.8    | 48      | 4-M4× 6                    | 4                    |       |  |
| LSBT           | 16       | 0                | 112           | 113                       | 10              | 4.2                        | 24      | 10.5                           | 33      | 23    | 4        | 40       | 20      | 28.8    | 48                         | 4—IVI4× 6            | 4     |  |
| LSB            | 20       | 0                | 215           | 240                       | 240 20          | 5.8                        | 8 30    | 20                             | 40      | 30    | 5        | 53       | 25      | 37.3    | 3 58                       | 4-M5×10              | 5     |  |
| LSBT           | 20       | 0                | 210           | 178                       | 20              | 5.6                        |         |                                | 40      | 30    | 3        | 55       | 25      | 57.5    | 50                         | 4 1013 × 10          | 3     |  |
| LSB            | 25       | 0                | 403           | 376                       | 25              | 6                          | 37.5    | 26                             | 52      | 40    | 6        | 67       | 30      | 30 41.8 | 70                         | 4-M6×12              | 6     |  |
| LSBT           | 25       | 0                | +00           | 237                       | 23              |                            |         |                                | J2      | 40    |          | 67       | 30      |         |                            | 4-M6×12              | U     |  |


Notes (1) This does not apply to hollow shaft (LSBT).

- (2)  $d_1$  represents the maximum diameter for end machining.
- (3) Represents standard length. We can produce other than the standard length, please specify the length of spline shaft by indicating the length in mm with the identification number.
- (4) The direction of basic dynamic load rating (C), basic static load rating ( $C_0$ ), dynamic torque rating (T), static torque rating and static moment rating ( $T_{\rm o}$ ,  $T_{\rm x}$ ,  $T_{\rm y}$ ) are shown in the sketches below.
  - The upper values of  $T_{\rm x}$  and  $T_{\rm y}$  are for one slide unit and the lower values are for two slide units in close contact.


Remarks 1. Block type Linear Ball Spline are all interchangeable specification.

2. LSB 6, LSBT 6, LSB 6...SL, LSB 8, LSBT 8, LSB 8...SL, LSB 10, LSBT 10, and LSB 10...SL are provided with oil holes. The specifications of grease nipple and oil hole are shown in Table 11 and Table 12 on page II -138.





|  | Spline shaft dimensions and tolerances mm |              |           |             |                        |         | Basic dynamic (4) load rating | Basic static (4)<br>load rating | Static moment rating (4) |                  |              |                            |             |             |
|--|-------------------------------------------|--------------|-----------|-------------|------------------------|---------|-------------------------------|---------------------------------|--------------------------|------------------|--------------|----------------------------|-------------|-------------|
|  | d                                         | Dim. d       | $d_1(^2)$ | $d_2$       | $L(^3)$                | Maximum | С                             | $C_{0}$                         | T                        | $T_{\mathrm{o}}$ | $T_{X}$      | $T_{\scriptscriptstyle Y}$ |             |             |
|  |                                           | tolerance(1) | 1 ( )     | 2           | _                      | length  | N                             | N                               | N⋅m                      | N·m              | N⋅m          | N·m                        |             |             |
|  | 6                                         | 0<br>-0.012  | 3.7       | 2           | 150 200                | 300     | 675                           | 1 090                           | 2.0                      | 3.3              | 2.3<br>13.6  | 1.9<br>11.4                |             |             |
|  |                                           |              |           | _           |                        |         | 540                           | 875                             | 1.6                      | 2.6              | 1.8<br>10.9  | 1.5<br>9.1                 |             |             |
|  | 8                                         | 8            | 8         | 0<br>-0.015 | 5                      | 3       | 150 200 250                   | 500<br>400                      | 1 340                    | 1 890            | 5.4          | 7.6                        | 4.7<br>30.2 | 3.9<br>25.4 |
|  |                                           | -0.015       |           | _           | 100 200 200            | 500     | 1 070                         | 1 510                           | 4.3                      | 6.1              | 3.7<br>24.2  | 3.1<br>20.3                |             |             |
|  | 10                                        | 0<br>-0.015  | 6.9       | 4           | 200 300                | 600     | 1 810                         | 2 760                           | 9.1                      | 13.8             | 9.1<br>53.0  | 7.6<br>44.5                |             |             |
|  |                                           |              |           | _           |                        |         | 1 450                         | 2 200                           | 7.3                      | 11.0             | 7.3<br>42.4  | 6.1<br>35.6                |             |             |
|  | 13                                        | 0<br>-0.018  | 9         | 6           | 200 300 400            | 800     | 3 330                         | 4 290                           | 21.7                     | 27.9             | 15.4<br>96.3 | 12.9<br>80.8               |             |             |
|  | 16                                        | 0<br>-0.018  | 11.4      | 8           | 200 300 400            | 1 000   | 4 980                         | 6 490                           | 39.9                     | 51.9             | 29.7<br>176  | 24.9<br>148                |             |             |
|  | 20                                        | -0.021       | 15        | _<br>10     | 300 400 500<br>600     | 1 000   | 6 670                         | 9 080                           | 66.7                     | 90.8             | 52.7<br>299  | 44.2<br>251                |             |             |
|  | 25                                        | -0.021       | 19.3      | _<br>15     | 300 400 500<br>600 800 | 1 200   | 10 500                        | 13 400                          | 136                      | 175              | 95.6<br>566  | 95.6<br>566                |             |             |



1N=0.102kgf=0.2248lbs. 1mm=0.03937inch